Risk Disaggregation As An Explanation Of The Smile: The Black & Scholes Formula Revisited.

Thierry Chauveaua Hayette Gatfaouiy

September 2001

aTEAM Pôle Finance (ESA 8059 du CNRS) of the University Paris I - Panthéon-Sorbonne, Maison des Sciences Economiques, 106-112, boulevard de L'Hôpital, 75013 Paris. Email: chauveau@univ-paris1.fr

yTEAM Pôle Finance (ESA 8059 du CNRS) of the University Paris I - Panthéon-Sorbonne, Maison des Sciences Economiques, 106-112, boulevard de L'Hôpital, 75013 Paris. Email: gatfaoui@univ-paris1.fr
Résumé

Dans leur formule, Black & Scholes évaluent le prix d’un call européen portant sur un actif sous-jacent sans distinction des risques qui composent ce dernier. En appliquant la méthode de pricing de Black & Scholes tout en faisant la distinction, à l’image de Sharpe (1964), entre le risque de marché et le risque idiosynchratique, nous obtenons une nouvelle formule de pricing de call européen. Les paramètres de cette formule comprennent les volatilités des deux facteurs de risque ou, de façon équivalente, la volatilité du facteur de marché ainsi que celle de l’action sous-jacente. Nous construisons alors un portefeuille destiné à dupliquer le facteur de marché, ce portefeuille de réplication étant un portefeuille diversifié de façon naïve. Sous certaines conditions de régularité, l’effet de diversification connu pour compenser les risques spécifiques, s’applique. Le prix d’un call européen portant sur une action peut alors s’exprimer en termes des volatilités respectives du portefeuille de réplication et de l’action sous-jacente (ainsi que de son beta). Finalement, nous comparons notre formule à celle de Black & Scholes ainsi qu’à la méthode d’évaluation proposée par Corrado & Su. Nous mettons en évidence l’existence d’un smile de volatilité tout en fournissant une explication concurrente de celle proposée par les modèles à volatilité stochastique (i.e : Heston [1993]) ou par les modèles supposant une distribution non normale pour les rendements des actifs (i.e : Corrado & Su [1996, 1997]).

Mots clés : évaluation d’option, smile de volatilité, risque systématique, risque idiosyncratique, diversification.

Abstract

In their formula, Black & Scholes evaluate a european call on an underlying asset without distinguishing between the different risks borne by the asset. Applying the Black & Scholes’ pricing methodology and distinguishing between the market risk and idiosyncratic risk, as Sharpe [1964] did, we obtain a new pricing formula for a european call. The parameters of this formula include the volatilities of the two risk factors, or alternatively, the volatility of the market factor and that of the stock. We then build a market factor replicating portfolio (MFR) which is a naively diversified portfolio. Under some regularity conditions, the diversification effect known to offset the specific risks applies. The price of a european call on a stock may then be expressed in terms of the volatilities of the MFR portfolio and of the underlying stock (and of its beta). Finally, we compare our formula to that of Black & Scholes and to the valuation proposed by Corrado & Su. We focus on the existence of a volatility smile and we give an explanation competing with the one proposed by stochastic volatility models (e.g. Heston [1993]) or models assuming a non normal distribution for the assets’ returns (e.g. Corrado & Su [1996, 1997]).

Keywords : option pricing, volatility smile, systematic risk, idiosyncratic risk, diversification.

JEL Codes : G11, G12, G13.
1 Introduction

The most famous concept of market equilibrium is that of the Capital Asset Pricing Model (henceforth CAPM). It was developed almost simultaneously by Sharpe [1963,1964], and Treynor [1961]. The major result given by the CAPM is that the total risk of an individual asset can be partitioned into two parts: systematic risk which is a measure of how the asset covaries with the economy and unsystematic risk which is independent of the economy. More precisely, any of the n traded risky assets exhibits an expected return which depends linearly on the level of a common factor—the market factor—and that of an independent idiosyncratic risk. Such a point of view implies that, if time were allowed to vary explicitly, the dynamics of the n risky assets would be driven by that of n + 1 independent factors. Consequently, this type of model is inconsistent with the complete market hypothesis underlying the financial assets valuation first proposed by Black & Scholes [1973].

One could argue that such an inconsistency vanishes if one considers more sophisticated versions of the CAPM such as the one developed by Merton [1973] in which it is assumed that trading takes place continuously and that asset returns are distributed log-normally. If the risk-free rate of interest is non-stochastic over time, the equilibrium returns must then satisfy an equation analogous to that of the elementary CAPM. However, the dynamics of the n traded risky assets is determined by that of n independent factors. Hence, the market is complete and the return on the market portfolio is a linear combination of those of the n independent factors. The CAPM and Black and Scholes’ valuation formula are compatible. Nevertheless, if the major result exhibited by the CAPM still holds when Merton’s assumptions are made, its interpretation is very different from the original one. Strictly speaking, there is no longer any market factor.

One could also argue that, in later works dealing with arbitrage pricing, the complete market hypothesis has often been relaxed. However, in almost all these studies, the market risk has still to be defined as a combination of individual risks.

To reconcile the “traditional view”—which we shall call Sharpe’s approach—with the valuation proposed by Black & Scholes, we develop a two-factor model assuming that the price of any traded stock depends on the level of the market risk and of that of a specific risk; the levels of the two factors are assumed to be two independent geometric brownian motions. We then use such a risks’ disaggregation for option pricing.

This paper is organized as follows. Using a complete financial market framework, we address the issue of valuing an option whose underlying asset is

1 Extensions of the model were provided by Mossin (1966), Lintner (1965,1969) and Black (1972).
2 There are thus as many specific risks as there are assets.
3 Which is not usually the case when elementary versions of the CAPM are under review.
4 To spare space, we leave aside the case when the risk-free interest rate is stochastic and, consequently, when the model exhibits two risk factors (and, therefore, three-fund separation).
5 For further details, see Cochrane & Saa-Requejo (1998) and Pham (1998).
a stock, given that the price of the stock is assumed to be determined by two independent risk factors, namely a market risk (common to all the stocks) and an idiosyncratic risk respectively\(^6\). It is easy to obtain an analytical formula for valuing European calls on stocks if it is further assumed that not only the \(n\) stocks but also the \((n + 1)\) factors are traded. The same result is obtained under the weaker assumption that only the \(n\) stocks and the market factor are traded. In this case, the price of an option is no longer expressed in terms of the volatilities of the market factor and of the pertinent idiosyncratic factor but in terms of the volatility of the market factor and that of the underlying asset.

Second, we take into account the diversification effect to get rid of the unobservability of the market factor. If the number of assets is high enough—and particularly if it tends towards infinity—, we can build a diversified portfolio whose value is as close to that of the market portfolio as we want. The simultaneous observation of the portfolio’s value and the prices of the \(n\) quoted assets is then equivalent to those of the \(n\) stocks and of the level of the market factor. In this case, the price of an option may be expressed in terms of the volatility of a naively diversified market portfolio and that of the underlying asset. Option pricing remains possible even if none of the factors is tradable—which is the case in practice—.

Finally, we compare our pricing to that of Black & Scholes [1973] and of Corrado & Su ([1996, 1997]), using a simulation method. This framework allows us to focus on the existence of a volatility smile; we then give an explanation competing with the one proposed by stochastic volatility models (e.g. Heston [1993]) or models assuming a non-normal distribution for the assets’ returns (e.g. Corrado & Su [1996, 1997]).

2 Option pricing with two factors: reconciling Sharpe’s and Black & Scholes’ points of view.

In this section, we use the framework of Black & Scholes [1973] except that the price of the underlying asset does no more depend on a unique risk factor but on two risk factors.

Assumptions:

We consider the price \(S_t\) of a stock: it is an \(F_t\)-adapted process where \(F_t\) represents the available information contained in the stock’s price at the current date \(t\). We suppose that the dynamic of \(S_t\) depends both on a market risk factor whose level is labelled \(X_t\) and on an idiosyncratic risk factor whose value is denoted \(I_t\). The former represents a risk associated to the economic

\(^6\)The complete market hypothesis is equivalent to assume that the two risk factors are perfectly observable.
state and/or to the business cycle. The latter represents a liquidity risk and/or a default risk. Finally, we define α and β as being two fixed deterministic constants. The main assumption is that the price S_t depends on the two risk factors, according to the following formula:

$$S_t = \alpha X_t + \beta I_t$$ (1)

We further assume that the levels of the risk factors follow Itô processes such that:

$$dX_t = X_t (\mu_t \alpha(t; X_t) dt + \sigma(t; X_t) dW_t)$$ (2)

$$dI_t = I_t (\mu_t \beta(t; I_t) dt + \sigma(t; I_t) dW_t)$$ (3)

where

- W_t and W_t^α are two independent Brownian motions under the historical probability;
- $\alpha(t; X_t)$, $\sigma(t; X_t)$, $\beta(t; I_t)$ and $\sigma(t; I_t)$ are continuous real valued functions on $\mathbb{R}^+ \times \mathbb{R}$ which are one time differentiable relatively to the time and two times differentiable relatively to their second argument. They are supposed to satisfy the appropriate Lipschitz conditions to assure the unicity of the solutions of their respective stochastic differential equations (SDE) (conditionally to a fixed starting value on the considered time horizon).

Note that Equations (1), (2) and (3) imply that we have:

$$R_{X_t} = d \ln X_t = \mu_t (t; X_t) \frac{\sigma(t; X_t)}{2} dt + \sigma(t; X_t) dW_t$$ (4)

$$R_{I_t} = d \ln I_t = \mu_t (t; I_t) \frac{\sigma(t; I_t)}{2} dt + \sigma(t; I_t) dW_t$$ (5)

and, consequently:

7 This decomposition follows the point of view of Wilson (1998) because it encompasses both the systematic part (induced by the economic state and the interest rates) and the specific part (peculiar to each debt issuer) of the credit risk.
8 This specification implicitly supposes that the following conditions are satisfied: $\alpha \geq 0$ and $\beta \geq 0$, $X_t \geq 0$, $I_t \geq 0$.
9 The market risk and idiosyncratic risk factors are independent. In this case, we have $F_t = \sigma(S_t; 0 \cdot t \cdot u \cdot t) = \sigma(W_u; 0 \cdot u \cdot t)$, $W_t = \sigma(W^\alpha_t; 0 \cdot u \cdot t)$.
\[R_{S_t} = -R_{X_t} + R_{I_t} \]

where \(R_{S_t}, R_{X_t}, \) and \(R_{I_t} \) are the returns on the contingent claims whose value are \(S_t; X_t \) and \(I_t \). According to Sharpe, \(R_{I_t} \) is the sum of the risk-free rate of interest \(R_{ft} \) and a random variable whose expected value is zero \((R_{I_t} = R_{ft} + \frac{\sigma^2}{2}(t; I_t))\) with \(E [\sigma^2(t; I_t)] = 0 \). Finally, equations (4) and (5) are coherent with Sharpe’s view if we identify \(\frac{\sigma^2}{2}(t; I_t) \) to \((1 - \gamma) R_{ft} \). We now study the influence of the assumptions above-mentioned on the stock’s dynamic and then on the valuation of a call written on this stock.

Dynamic of the price of the underlying asset:

We apply Ito’s lemma to the underlying asset’s price considered as a two-variables function \(S_t = S(X_t; I_t) \). Indeed, \(S_t \) depends exclusively on the levels of the market and of the specific risks\(^{10}\):

\[
dS_t = \frac{\partial S}{\partial X} dX_t + \frac{\partial S}{\partial I} dI_t + \frac{1}{2} \frac{\partial^2 S}{\partial X^2} \sigma^2(t; S_t) X_t^2 + \frac{\partial^2 S}{\partial I^2} \gamma^2(t; I_t) I_t^2 dt
\]

We replace \(dX_t \) and \(dI_t \) with their respective expressions and we compute the partial derivatives of price of the stock with respect to the risk factors:

\[
\frac{\partial S}{\partial X} = -\gamma X_t + \frac{1}{2} \frac{\partial^2 S}{\partial X^2} \sigma^2(t; X_t) \gamma \frac{1}{X_t} = S_t
\]

\[
\frac{\partial S}{\partial I} = \gamma I_t + \frac{1}{2} \frac{\partial^2 S}{\partial I^2} \sigma^2(t; I_t) \gamma \frac{1}{I_t}
\]

which leads to the following relation:

\[
\frac{dS_t}{S_t} = -\gamma (t; X_t; I_t) dt + \frac{1}{2} \frac{\partial^2 S}{\partial X^2} \sigma^2(t; X_t) dW_t + \frac{\partial^2 S}{\partial I^2} \sigma^2(t; I_t) dW_t
\]

with

\[
\gamma (t; X_t; I_t) = -\gamma (t; X_t) + \frac{1}{2} \frac{\partial^2 S}{\partial X^2} \sigma^2(t; X_t) + \frac{1}{2} \frac{\partial^2 S}{\partial I^2} \sigma^2(t; I_t)
\]

\[
\frac{\partial S}{\partial I} = -\frac{\partial^2 S}{\partial X^2} \sigma^2(t; X_t) + \frac{\partial^2 S}{\partial I^2} \sigma^2(t; I_t)
\]

\[
dW_t = \frac{\partial^2 S}{\partial X^2} \sigma^2(t; X_t) dW_t + \frac{\partial^2 S}{\partial I^2} \sigma^2(t; I_t) dW_t
\]

\[\] standard brownian motion

\(^{10}\)S is a continuous and twice differentiable function with respect to each argument \(X \) and \(I \).
We obtain the stock's dynamic expressed in terms of the parameters characterizing the evolution of the risk factors encompassed in its price. Note that the existence of this SDE's solution results from the continuity of the parameters characterizing the diffusions of the two risk factors. The uniqueness results from the Lipschitz conditions which have been assumed to hold.

Dynamic of the call’s price:

We now consider a european call written on the stock, namely the underlying asset, with a strike price K and a maturity date T. The value C of the european call depends on the levels of the two risk factors and on time; it can be specified as follows:

$$C = C(t; X_t; I_t)$$

which allows us to apply the multivariate Itô's lemma to the call's price11. We then obtain the following equation:

$$dC = \left[C_X \frac{1}{2} \frac{d}{dt} \left(t; X_t \right) X_t + C_I \frac{1}{2} \frac{d}{dt} \left(t; I_t \right) I_t + C_t \right] dt$$

$$+ \left[C_X \frac{d}{dt} \left(t; X_t \right) X_t dW_t + C_I \frac{d}{dt} \left(t; I_t \right) I_t dW_t \right]$$

under the limit condition:

$$C(T; X_T; I_T) = (S_T - K)^+ = \max(0; S_T - K)$$

As usual, we first consider a self-financing strategy allowing the replication of the call with the two risk factors. The value V_t of the replicating portfolio, is defined by

$$V_t = \xi_t I_t + \eta_t X_t = C(t; X_t; I_t)$$

which gives $\xi_t = C_I$ and $\eta_t = C_X$.

11We use the following standard denominations:

$$\frac{dC}{dt} = C_t, \quad \frac{dC_X}{dt} = \frac{d^2 C}{dt^2} = C_{Xt} = C_{IX}$$

$$\frac{dC_I}{dt} = C_I, \quad \frac{dC_{IX}}{dt} = C_{IXI}$$

$$\frac{dC_I}{dt} = C_{II}, \quad \frac{d^2 C}{dt^2} = C_{ZZ}$$

$$\frac{dC}{dX} = C_X, \quad \frac{d^2 C}{dX^2} = C_{XX}$$

$$\frac{dC}{dI} = C_I, \quad \frac{d^2 C}{dI^2} = C_{II}$$

$$C_Z = C_{IX}, \quad C_{ZZ} = C_{XX} C_{XI}, \quad -C_{IX} = C_{IX} C_{XI}$$
Then, we build a hedging portfolio, using the replicating portfolio and the call itself\(^{12}\). The hedging portfolio is immune against the market risk and the idiosyncratic risk, and its value \(\frac{1}{2} \) may be expressed as:

\[
\frac{1}{2} = \mathcal{V}_t \quad C(t; X_t; I_t) = C_t I_t + C_X X_t I_t \quad C(t; X_t; I_t)
\]

If there is no arbitrage opportunity, the return of the immune portfolio is equal to the risk free rate of return\(^{13}\); hence:

\[
d\frac{1}{2} = r \frac{1}{2} dt
\]

\[
C_t dI_t + C_X dX_t I_t \quad dC = r (C_t I_t + C_X X_t I_t) \quad dC(t; X_t; I_t) \quad dt
\]

Replacing the stochastic differentials with their respective expressions and grouping the stochastic and the deterministic terms, we get the following partial differential equation (PDE):

\[
rC_X X_t + \frac{1}{2} C_{XX} X_t^2 + C_t I_t \quad rC + \frac{1}{2} C_{II} I_t^2 + rC_t I_t = 0
\]

We now assume that the level of each risk factor follows a geometric brownian motion with constant drift and volatility\(^{14}\), that is to say:

\[
^1(t; X_t) = \frac{1}{2}^2(t; X_t) = \frac{1}{2}^2(t; I_t) = \frac{1}{2}
\]

where \(\frac{1}{2}; \frac{1}{2}; \frac{1}{2}^2 \) and \(\frac{1}{2}^2 \) are deterministic constants. We therefore assume a constant risk-free rate of interest \(^1^2^1 = R_f \). The PDE above-mentioned takes the form:

\[
rC_X X_t + \frac{1}{2} C_{XX} X_t^2 + C_t I_t \quad rC + \frac{1}{2} C_{II} I_t^2 + rC_t I_t = 0
\]

PDE resolution:

We show in the appendix that the PDE resolution leads to the following formulation for the price of the two risk factors european call:

\[
C(T; t; X_t; I_t; K; r; \frac{1}{2}^2) = \int Z \underbrace{\int \frac{1}{2} w^2 w} \quad \underbrace{\int (w) \quad dw \quad \int K e^r(T-t) \quad N \underbrace{\frac{1}{2} w^2 w} \quad \underbrace{\int (w) \quad dw}}_{12}^3
\]

\(^{12}\) The hedging portfolio corresponds to the selling of one unit of call and to the simultaneous buying of \(\frac{1}{2} \) units of specif. risk factor and of \(\frac{1}{2} \) units of market factor.

\(^{13}\) This interest rate is temporarily supposed constant.

\(^{14}\) This is equivalent to suppose that each factor’s rate of return follows a normal distribution law.
with

\[o_t = n X_t I_t e^{r_1 \frac{w^2}{2} + \frac{1}{2} \frac{\sigma^2}{\gamma}} (T_i t) + \frac{h^2}{2} r_2 \frac{w^2}{2} + \frac{1}{2} \frac{\sigma^2}{\gamma}, (T_i t) \]

\[\ln \frac{n X_t I_t}{K} + w \frac{\sigma^2}{2} (T_i t) + 4 - r \frac{w^2}{2} - r + \frac{\sigma^2}{2} (T_i t) \]

\[\partial_1 (w) = \frac{3}{2} \frac{\sigma^2}{2} (T_i t) \]

\[\partial_2 (w) = \ln \frac{n X_t I_t}{K} + - w - r \frac{w^2}{2} + r i \frac{w^2}{2} (T_i t) \]

For further details about the computation of the analytical formula associated to the pricing of the European call, the reader is invited to consult the appendix. Note that the case \(\gamma = 0 \) corresponds to the formula of Black & Scholes with \(S_t = n I_t \). Moreover recalling that \(\sigma = \frac{\sigma^2}{2} + \frac{\gamma}{2} \), the formula above-mentioned has the new expression:

\[C(T_i t; S_t; K; r; \sigma; \gamma) = o_t \]

\[= o_t e^{r_1 \frac{w^2}{2} + \frac{1}{2} \frac{\sigma^2}{\gamma}} (T_i t) + \frac{h^2}{2} r_2 \frac{w^2}{2} + \frac{1}{2} \frac{\sigma^2}{\gamma}, (T_i t) \]

\[\ln \frac{n X_t I_t}{K} + w \frac{\sigma^2}{2} (T_i t) + 4 - r \frac{w^2}{2} - r + \frac{\sigma^2}{2} (T_i t) \]

\[\partial_1 (w) = \frac{3}{2} \frac{\sigma^2}{2} (T_i t) \]

\[\partial_2 (w) = \ln \frac{n X_t I_t}{K} + - w - r \frac{w^2}{2} + r i \frac{w^2}{2} (T_i t) \]

We then notice that the option's price depends both on the market factor and the price of the traded asset. The valuation remains therefore possible when the specific factors become unobservable. Indeed, we no more need to know the volatilities \(\sigma \) and \(\gamma \) of the market and idiosyncratic factors respectively but only the volatilities \(\gamma \) and \(\sigma \) of the market factor and the underlying respectively.

3 Diversification or indirect observation of the market factor

To solve the problem posed by the unobservability of the risk factors—which is the case in practice—we adapt the Capital Asset Pricing Model (CAPM) to
the framework used in the preceding section. We assume the existence of a financial market where of \((n + 1)\) assets are traded (\(n\) risky assets and one risk free asset). The \(n\) risky assets may be viewed as stocks and the safe asset as a bill.

Notations and analytical framework :

We assume that all the assumptions made in Section 2 still hold. We define \(S_i^t\) as the value of the \(i\)th stock at the current date \(t\). From Section 2, we know that the prices obey the following dynamic :

\[
S_i^t = \pi X_i^t I_i^t
\]

with \(i = 1, \ldots, n\) and \(\pi > 0\).

\(\pi\) is the price of the \(i\)th asset, \(X_i^t\) is the log price of the \(i\)th asset, and \(I_i^t\) is the dividend of the \(i\)th asset.

\[
dX_i^t = \pi X_i^t (\pi dt + \sigma dW_i^t)
\]

\[
dI_i^t = I_i^t \pi dt + \sigma I_i^t dW_i^t
\]

where \(\sigma > 0\) and \(\pi > 0\). \(X_i^t\) and \(I_i^t\) are some constant values. In this case, we know that the dynamic of each risky asset \(i\) in the historical universe has the form :

\[
dS_i^t = S_i^t \left[r - \frac{1}{2} \sigma^2 - \frac{1}{2} \left(\pi \sigma^2 \right) \right] dt + S_i^t \sigma \left(\pi \sigma^2 \right) dW_i^t
\]

which transforms, in the risk neutral universe, as :

\[
dS_i^t = S_i^t \left[r - \frac{1}{2} \sigma^2 \right] dt + S_i^t \sigma \left(\pi \sigma^2 \right) dW_i^t
\]

We then build a diversified portfolio, i.e. including all the risky assets. The proportion of security \(i\) in the portfolio is denominated \(a_i^t\) and the value \(M_t\) of the portfolio\(^{15}\) is hence :

\[
M_t = \sum_{i=1}^{n} a_i^t S_i^t
\]

Diversification effect :

From now on, we consider a naively diversified portfolio, namely a uniformly weighted portfolio. For reasons which will become apparent later, we shall call it the market-factor replicating portfolio (MFR portfolio). Hence, we have :

\[
\sum_{i=1}^{n} a_i^t = 1
\]

\(^{15}\)The weights \(a_i^t\) of the market portfolio are therefore bounded on the space of the real numbers (since \(\pi > 0\), the \(a_i^t\) are bounded).

10
\[d\bar{q}_i = \frac{dS_i}{M_t} = \frac{1}{n} \]

and the dynamic of the value of the MFR portfolio then reads:

\[\frac{dM_t}{M_t} = \mathbb{E} \, dt + -\beta \frac{\sigma}{\sqrt{n}} \, dW_t + \frac{1}{n} \sum_{i=1}^{\infty} \beta_i \delta_i \frac{\sigma}{\sqrt{n}} \, dW_{t,i} \]

where

\[\mathbb{E} = \frac{1}{n} \sum_{i=1}^{n} \mu_i \]

Conditionally to the information available at time \(t \) and under the risk neutral martingale measure, we can express the total risk associated to the MFR portfolio’s return as:

\[\text{Var} \left(\frac{dM_t}{M_t} \right) = \left(-\beta^2 + \frac{1}{n} \sum_{i=1}^{\infty} \beta_i^2 \right) dt \]

or, equivalently:

\[\text{Var} \left(\frac{dM_t}{M_t} \right) = \beta^2 - \frac{1}{n} \sum_{i=1}^{\infty} \beta_i^2 dt \]

where \(\frac{1}{n} \sum_{i=1}^{\infty} \beta_i^2 \) is the average idiosyncratic risk (\(\frac{1}{n} \sum_{i=1}^{\infty} \beta_i^2 \)). Consequently, we can conclude that, when the number \(n \) of securities tends towards infinity, we have:

\[\text{Var} \left(\frac{dM_t}{M_t} \right) = -\beta^2 dt \]

The diversification effect tends to offset the specific risk of the MFR portfolio. The risk borne by the uniformly weighted market portfolio depends only on its systematic risk and the volatility \(\gamma_M \) of the MFR portfolio, when \(n \) is infinitely high, then reduces to the following expression:

\[\gamma_M = -\gamma \]

\[\text{Note that, by definition, \(\delta_i \) is a } \mathbb{F}_t \text{-adapted process whatever \(i \) under a filtration } \mathbb{F}_t \text{ defined as following: } \mathbb{F}_t = \bigcap_{s \leq t} \mathcal{F}_{s,i} = [\mathbb{F}_{s} ; \mathbb{F}_{s,i} ; \mathbb{F}_T] \text{. Analogously, the processes } S_t, M_t, \beta, \frac{1}{n} \text{ and } \bar{E}_t \text{ are } \mathbb{F}_t \text{-adapted. Moreover, under this filtration } \mathbb{F}_t \text{, the risk neutral measure is such that } \mathbb{W}_t \text{ and } \mathbb{B}_t \text{ are independent standard brownian motions.} \]

\[\text{This is coherent with the view of Wilson (1998) arguing that the specific part of credit risk could be diversified.} \]
Moreover, the price of the European call on stock \(i \) now reads, using the same denominations as before, except that the superscript \(i \) is now explicitly taken into account:

\[
C^{\mu} = \frac{\text{\(e^{1/2} w \)}}{2\sqrt{\pi}} N \left(\frac{w}{\sqrt{2}} \right) \text{d}w \int_{0}^{t} \text{d}t \text{\(e^{r(T-t)} \)} \frac{Z}{\sqrt{2\sqrt{4}} N} \left(\frac{w}{\sqrt{2}} \right) \text{d}w
\]

with

\[
\begin{align*}
\sigma^2 &= S^2_{\text{i}} e^{\mu_{\text{i}} r_{\text{i}} (\gamma_{\text{M}} - \frac{\sigma_\text{M}}{T-t})^2} + \frac{1}{2} (\gamma_{\text{M}} - \frac{\sigma_\text{M}}{T-t})^2 \quad (T-t) \\
\sigma^2 &= \ln \left(\frac{S^2_{\text{i}}}{\kappa^2} \right) + \frac{w^2}{\sqrt{2}} - \frac{1}{2} r_{\text{i}} \left(\frac{\gamma_{\text{M}} - \frac{\sigma_\text{M}}{T-t}}{2} \right)^2 + r + \frac{a^2}{2} \quad (T-t) \\
\sigma^2 &= \ln \left(\frac{S^2_{\text{i}}}{\kappa^2} \right) + \frac{w^2}{\sqrt{2}} - \frac{1}{2} r_{\text{i}} \left(\frac{\gamma_{\text{M}} - \frac{\sigma_\text{M}}{T-t}}{2} \right)^2 + r + \frac{a^2}{2} \quad (T-t)
\end{align*}
\]

Finally, on a financial market where \(n \) risky assets and one risk-free asset are traded in such a way that each risky asset depends on a market factor and an idiosyncratic factor according to equation (6), the factors' unobservability does not preclude the risk neutral valuation of options. One has just to substitute the ratio \(\gamma_{\text{M}} \) of the volatility of the market portfolio's return to the average beta for the volatility \(\gamma \) of the market factor. The price of an option may be expressed in terms of the volatilities of a naively diversified market portfolio and of the underlying asset respectively. Option pricing remains therefore possible even if none of the factors is tradable—which is the case in practice.

4 Comparison with the formulae of Black & Scholes and of Corrado & Su

In this section, we compare our option valuation formula to the valuations proposed by Black & Scholes (1973) and by Corrado & Su (1996, 1997). Given the complexity related to the computation of the comparative statics of our analytical formula, the comparisons are achieved through simulations.
4.1 Black & Scholes

4.1.1 Comparison with a varying beta

In this subsection, we carry out simulations where beta is the only parameter which is varying. Simulations are achieved using the next values of parameters:

\[S = K = 100 \quad \sigma^2 = \bar{\sigma}^2 = 1 \]
\[r = 0.10 \quad (T - t) = 0.25 \]

We therefore consider at-the-money calls and, to make the comparison fair, we impose the next relation:

\[\bar{\sigma}^2 = -2 \cdot \frac{1}{\sigma^2} + \frac{\bar{\sigma}^2}{\sigma^2} \]

where \(\bar{\sigma}^2 \) represents the aggregated volatility of the underlying (i.e. without any distinction between specific and systematic risks). We then plot the pricing difference between the call prices induced from our two factors valuation method and those issued from the Black & Scholes’ valuation in terms of the beta parameter characterizing the underlying, namely the difference between the two factors pricing and the Black & Scholes’ one:

![Diagram showing the difference between the two factors pricing and Black & Scholes’ pricing.](image)

We observe that the pricing difference grows when the beta increases, and reduces when the beta starts decreasing from the level of 0.40. Notice that, as expected, the pricing error is null for a zero beta since for a null beta our valuation formula reduces to the Black & Scholes’ formula. Moreover, the pricing difference is also null when the beta is equal to 0.80.
4.1.2 The role of “moneyness”

We now express the prices of calls as functions of the moneyness (i. e. ratio of the underlying’s price to the strike $(S=K)$) associated to the pricing, given a fixed beta. Simulations are undertaken, using the following values for the other parameters:

- $K = 100$
- $\frac{S}{K} = 1$
- $r = 0.10$
- $(T - t) = 0.25$

We still have the following relation:

$$\frac{3}{2} BS = \frac{\frac{3}{2}}{2} + \frac{3}{2}$$

We successively realize our simulations for some values of the beta18 ranging from 0.1 to 1.5. To have a global view, we plot the European call pricing difference between our two factors method and the valuation of Black & Scholes in function of the moneyness and of the beta. The graph under-mentioned illustrates then the pricing difference between our two factors methodology and the valuation of Black & Scholes for varying beta and moneyness parameters.

\[\text{Difference between the European call prices.}\]

Note that for beta values inferior to 0.8, the pricing difference is negative (i. e. : the pricing of Black & Scholes overestimates the European call price) while in the opposite case, this difference is positive (i. e. : the pricing of Black & Scholes underestimates the European call price).

18 The case $\beta = 0$ is uninteresting because our two factors pricing formula reduces to the valuation formula of Black & Scholes, which gives a null pricing error whatever the value of the moneyness.
Scholes underestimates the European call price. This difference being almost null when the beta equals 0.8. Moreover, the more the moneyness is high, the more important is the pricing difference in absolute value.

4.1.3 Existence of a volatility smile

We consider here that call prices induced from our two factors formula (i.e.: the pricing of Chauveau & Gatfaoui) correspond to the prices observed on the market. We assume the following values of parameters:

\[
\begin{align*}
K &= 100 \\
\sigma &= 0.16 \\
S &= \text{moneyness} \times K \\
r &= 0.10 \\
(T - t) &= 0.25
\end{align*}
\]

Starting from the call prices above-mentioned, we invert the Black & Scholes' formula to deduce the associated values of the implied volatility, which allows to plot the graph corresponding to the implied volatility's evolution in function of the moneyness.

We then find again the volatility smile describing the well known bias of the Black & Scholes' formula generated by the constant volatility hypothesis. Besides, this bias is the object of a correction method recently proposed and which is presented in the next section.

4.2 Corrado & Su

In this section, we compare our pricing formula with the ones of Corrado & Su and of Black & Scholes respectively in order to realize some comparisons between those three valuation methods.
4.2.1 Pricing formula

In 1996, Corrado & Su developed a methodology to correct the bias described by the volatility smile in the Black & Sholes' formula. They used a Gram-Charlier series expansion of the standard normal density function, which lead them to establish the following European call valuation formula:

\[C_{CS}(t; S) = C_{BS}(t; S) + \frac{1}{3}Q_3 + (\frac{1}{4} - 3)Q_4 \]

with

\[C_{BS}(t; S) : \text{the Black & Scholes' formula by replacing } \frac{\sigma^2}{2} \text{ with } \frac{\sigma^2}{3}; \]
\[d_1 = \frac{\ln(S_t/K_j) + \frac{\sigma^2}{3}(T_t - t)}{\frac{\sigma^2}{3}(T_t - t)}; \]
\[Q_3 = \frac{1}{6}S \frac{\sigma^2}{3} \left[\frac{n(d_1) - n(d_1)}{n(d_1) - n(d_1)} \right] \]
\[Q_4 = \frac{1}{24}S \frac{\sigma^2}{3} \left[\frac{n(d_1) - n(d_1)}{n(d_1) - n(d_1)} \right] \]

\(n(\cdot) \): the standard normal density function;
\(N(\cdot) \): the cumulative distribution function associated to the standard normal law;
\(\frac{\sigma^2}{3}, \frac{1}{3}; \frac{1}{4} \): parameters of volatility, skewness and kurtosis respectively associated to the underlying's dynamic.

4.2.2 Comparison relatively to the moneyness

To compare our two factors pricing formula with that of Corrado & Su, we use the parameters' values presented in the previous section to generate call prices according to the pricing of Chauveau & Gatfaoui. Always assuming that the prices then induced are the observed market prices, we estimate the parameters \(\frac{\sigma^2}{3}, \frac{1}{3}, \frac{1}{4} \) of the Corrado & Su's formula when considering the call prices previously computed. The estimation is achieved by numerically solving the following problem:

\[\min_{\frac{\sigma^2}{3}, \frac{1}{3}, \frac{1}{4}} \sum_{j=1}^{8} \left[C(t; \text{moneyness}_j) - C_{CS}(t; \text{moneyness}_j) \right]^2 \]

where \(\text{moneyness}_j = \frac{S_t}{K_j} \) with \(K_j \in 65; \ldots; 135 \). The minimization of the sum of the squared pricing errors is carried out through a quasi-Newton method.
using the algorithm of Davidon-Fletcher-Powell19, which allows to obtain the following values of parameters:\ 3CS = 0.29947828, 1.3 = 1.7423441 and 1.4 = 8.883017220. Introducing those estimations into the formula of Corrado & Su allows then to compute the call prices associated giving the graph underneath in which the call prices induced from the method of Chauveau & Gatfaoui, the formula of Corrado & Su and the valuation of Black & Scholes are respectively drawn in blue, black and red.

European call pricing according to the three formulae presented.

Considering the graph and omitting the negative pricing problem presented by the formula of Corrado & Su for small values of the moneyness, we observe that the formula of Corrado & Su seems to lie between our two factors valuation formula and the Black & Scholes’ formula.

5 Conclusion

In this paper, we have proposed an analytical formula for valuing a european call with two risk factors: the first factor corresponds to the systematic risk and the second factor corresponds to the specific risk of the underlying asset, as in Sharpe’s simplified model21. We derived our valuation formula from a risk disaggregation in the Black & Scholes’ pricing formula, which allowed us to get an analytical expression for the european call pricing. The parameters

\begin{itemize}
 \item 19For further explanation, the reader is invited to consult the book of Press, Flannery, Teukolsky & Vetterling (1989).
 \item 20Note that those values show that, on one hand, the distribution of the call prices is left-skewed, and on the other hand, this distribution is described by an excess of kurtosis relatively to a normal law, which indicates the existence of a left fat tail in the distribution.
 \item 21This decomposition could also be improved if we consider that systematic risk and specific risk are themselves some aggregation of respectively two different series of influential variables (i.e.: multifactor framework)
\end{itemize}
of this formula therefore depend on the volatilities of the two risk factors, or, alternatively, on the volatility of the market factor and on that of the stock.

We then built a market factor replicating portfolio which is a naively diversified portfolio and we studied the modifications induced in the CAPM framework. We found that, under some regularity conditions, the diversification effect known to offset the specific risk applies. The price of a European call on a stock may then be expressed in terms of the volatilities of the MFR portfolio and of the underlying stock (and of its beta).

Finally, we made a few simulations in order to compare our analytical formula with those of Black & Scholes and of Corrado & Su. First, the comparison with the formula of Black & Scholes underlines the fact that the distinction between the systematic risk and the idiosyncratic risk brings an additional degree of accuracy in the European call valuation. Moreover, assuming that the European call prices induced from our two factors formula are correct and obtaining the implicit volatility by inverting the Black & Scholes' formula, leads to the evidence of a volatility smile. Second, the comparison with the valuation method proposed by Corrado & Su shows that European call prices induced from the pricing of Chauveau & Gatfaoui exhibit skewness and kurtosis characteristics in accordance with the observed market behavior. Furthermore, the results generated by simulations seem to suggest that the formula of Corrado & Su lies between our two factors valuation formula and the pricing formula of Black & Scholes.

The results in this paper are to be completed by a test on empirical data. This is all the more essential that we have imposed a volatility constraint when comparing our formula with that of Black & Scholes.

6 Appendix: The call pricing with two risk factors

We introduce here the pricing framework of the call, which is the following one: Analogous to the no arbitrage opportunity principle, we have the next relation under the risk neutral measure \(Q \) associated to the valuation of the bidimensional process \(Z_t = X_t, I_t \):

\[
\begin{align*}
C(t;X_t;I_t) & = C(t;Z_t) = \mathbb{E}_Q \left[e^{r(T-t)} C(T;Z_T) \right] \\
& = e^{r(T-t)} \mathbb{E}_Q \left[C(T;Z_T) | Z_t \right]
\end{align*}
\]

which can be written:
\[C(t; Z) = e^{r(T_t, t)} \int_{R^2} \int_{R^2} f(Y_{T_t} | Y_t) \, dY_{T_t, 1} dY_{T_t, 2} \]

where

\[a = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad 8W = \begin{pmatrix} W_1 \\ W_2 \end{pmatrix}, \quad 2R^2; \mathbb{E} = e^{W_1}, \quad \]

\[\text{and} f(Y_{T_t} | Y_t) \] represents the conditional density of \(Y_{T_t} \) given \(Y_t \). We know that the law of \(Y_{T_t} \) given \(Y_t \) corresponds to a bidimensional normal law \(N(\text{MOY}_t; \text{VAR}_t) \) in a risk neutral universe such that:

\[\text{MOY}_t = Y_t + (T_t - t)H_t = Y_t^1 + (T_t - t)Y_t^2 \]

\[\text{VAR}_t = \begin{pmatrix} X_t^0(t; X_t) & 0 \\ 0 & 1_{t} \end{pmatrix} \]

Knowing the law of \(Y_{T_t} \) given \(Y_t \), we can compute the integral of the relation (9) after introducing the following notations:

\[g(Z_T) = g(e^{Y_{T_t}}) = \int_{\mathbb{R}^2} \begin{pmatrix} a \end{pmatrix}^T e^{Y_{T_t}} \begin{pmatrix} i \end{pmatrix} b e^{Y_{T_t}} \begin{pmatrix} i \end{pmatrix} \begin{pmatrix} i \end{pmatrix} K \]

\[= \mathbb{1}_a h(e^{Y_{T_t}}) \]

with

\[\mathbb{1}_a = \text{indicator function of the set} = \begin{pmatrix} a \end{pmatrix}^T e^{Y_{T_t}} \begin{pmatrix} i \end{pmatrix} b e^{Y_{T_t}} \begin{pmatrix} i \end{pmatrix} K \]

\[h(e^{Y_{T_t}}) = \begin{pmatrix} a \end{pmatrix}^T e^{Y_{T_t}} \begin{pmatrix} i \end{pmatrix} b e^{Y_{T_t}} \begin{pmatrix} i \end{pmatrix} K \]

The relation (6) is written:

\[C(t; X_t; I_t) = e^{r(T_t, t)} \int_{R^2} \int_{R^2} \mathbb{1}_a h(e^{Y_{T_t}}) f(Y_{T_t} | Y_t) \, dY_{T_t, 1} dY_{T_t, 2} \]

(10)
Or

$$C(t;X_t;1_t) = e^{r(T_1-t)} \int_{u_2R^2}^Z e^{h(\mu + M\text{Y}) \frac{1}{2}(\frac{u_1^2}{\mu} + \frac{u_2^2}{\mu^2})} du_1 du_2$$

We now explain how to calculate the call price with two risk factors when achieving the following integration:\(^{22}\)

$$\mathbb{E} = \mathbb{E}^{C(t;Z)} = \int_{u_2R^2}^Z e^{h(\mu + M\text{Y}) \frac{1}{2}(\frac{u_1^2}{\mu} + \frac{u_2^2}{\mu^2})} du_1 du_2$$

We pose $\mathbb{E} = \mathbb{E}_1 + \mathbb{E}_2$ with:

$$\mathbb{E}_1 = \int_{u_2R^2}^Z e^{h(\mu + M\text{Y}) \frac{1}{2}(\frac{u_1^2}{\mu} + \frac{u_2^2}{\mu^2})} du_1 du_2$$

$$\mathbb{E}_2 = \int_{u_2R^2}^Z e^{h(\mu + M\text{Y}) \frac{1}{2}(\frac{u_1^2}{\mu} + \frac{u_2^2}{\mu^2})} du_1 du_2$$

$$U_{T,\Lambda,\nu} N(0;\text{VAR})$$

$$\mathbb{E}_1 = \int_{u_2R^2}^Z e^{h(\mu + M\text{Y}) \frac{1}{2}(\frac{u_1^2}{\mu} + \frac{u_2^2}{\mu^2})} du_1 du_2$$

$$\mathbb{E}_2 = \int_{u_2R^2}^Z e^{h(\mu + M\text{Y}) \frac{1}{2}(\frac{u_1^2}{\mu} + \frac{u_2^2}{\mu^2})} du_1 du_2$$

22To simplify the proof, we forget the time indexation at the current date.
First member integration:

\[\mathbb{E}_1 = \int_{u \in \mathbb{R}^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{u_1^2 u_2^2}{2}} \exp \left(\frac{1}{2} \frac{u_1^2}{\mu_1^2} + \frac{u_2^2}{\mu_2^2} \right) du_1 du_2 \]

with

\[\mu_1 = \mu_1 \mathbb{I}_e \mathbb{I}_r \sqrt{T - t} \quad \text{and} \quad \mu_2 = \mu_2 \mathbb{I}_e \mathbb{I}_r \sqrt{T - t} \]

Applying the Fubini theorem, we can write the following relation about the first member:

\[\mathbb{E}_1 = \int_{u \in \mathbb{R}^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{u_1^2 u_2^2}{2}} \exp \left(\frac{1}{2} \frac{u_1^2}{\mu_1^2} + \frac{u_2^2}{\mu_2^2} \right) J_1(u_1) du_1 \]

with

\[J_1(u_1) = \int_{u_2 \in \mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{u_1^2 u_2^2}{2}} \exp \left(\frac{1}{2} \frac{u_1^2}{\mu_1^2} + \frac{u_2^2}{\mu_2^2} \right) du_2 \]

and

\[d = \ln \frac{\mu_1}{\mathbb{X}_1} - u_1 + \mu \mathbb{I}_r \mathbb{I}_r \sqrt{T - t} + \mu \mathbb{I}_r \mathbb{I}_r \sqrt{T - t} \]

An appropriate change of variable allows us to establish the following result:

\[J_1(u_1) = e^{\frac{1}{2} \mu_1^2 (T - t)} N \left(\frac{\mathbb{I}_r \mathbb{I}_r \sqrt{T - t}}{\sqrt{T - t}} \right) \]

with

\[\phi = \phi_1(u_1) = \ln \frac{\mathbb{X}_1 - u_1}{\mu} + u_1 + \frac{1}{2} \mu \mathbb{I}_r \mathbb{I}_r \sqrt{T - t} + \frac{1}{2} \mu \mathbb{I}_r \mathbb{I}_r \sqrt{T - t} \]

and \(N(\cdot) \) the standard normal cumulative distribution function.

A second change of variable under the integral concerning \(u_1 \) allows then to pose:

\[\mathbb{E}_1 = \int_{u \in \mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{u_1^2 u_2^2}{2}} \exp \left(\frac{1}{2} \frac{u_1^2}{\mu_1^2} + \frac{u_2^2}{\mu_2^2} \right) du \]

with

\[\mu_1 = \mu_1 \mathbb{I}_e \mathbb{I}_r \sqrt{T - t} \quad \text{and} \quad \mu_2 = \mu_2 \mathbb{I}_e \mathbb{I}_r \sqrt{T - t} \]
with

\[b_d = \frac{\partial (w)}{\partial (w)} \]

\[= \ln \frac{w^{1/2}}{\sqrt{2\pi}} + w^{-3/4} \left(\frac{\xi}{T - t} \right)^{3/2} + \frac{1}{2} \left(1 - 2^{3/2} \right) + \left(T - t \right) \]

\[\phi \left(\frac{1}{2} \left(T - t \right) \right) \]

\[= \pi X \ln \frac{w^{1/2}}{\sqrt{2\pi}} + \frac{1}{2} \left(1 - 2^{3/2} \right) + \frac{i}{2} \left(T - t \right) + \left(T - t \right) \]

Second member integration :

\[e_2 = i K \int_{w_2} \left[\frac{\partial (w)}{\partial (w)} \right] \]

\[= i K \int_{R} \left[\frac{\partial (w)}{\partial (w)} \right] \]

\[= i K \int_{R} \left[\frac{\partial (w)}{\partial (w)} \right] \]

\[J_2(u_1) = \int_{d'} \left[\frac{\partial (w)}{\partial (w)} \right] \]

Applying an appropriate change of variable (to get the standard normal distribution density), we obtain :

\[J_2(u_1) = N \left[\frac{\partial (w)}{\partial (w)} \right] \]

with

\[\frac{\partial (w)}{\partial (w)} = \ln \frac{w^{1/2}}{\sqrt{2\pi}} + w^{-3/4} \left(\frac{\xi}{T - t} \right)^{3/2} + \frac{1}{2} \left(1 - 2^{3/2} \right) + \left(T - t \right) \]

This gives us the following relation :

\[e_2 = i K \int_{R} \left[\frac{\partial (w)}{\partial (w)} \right] \]

Consequently, the price of the considered european call has the following form :

\[\]
\[\mathcal{E} = \int_{-\infty}^{\infty} e^{\frac{1}{2}w^2} e^{-\frac{1}{2}w^2} \frac{1}{\sqrt{2\pi}} dw \]

with

\[\sigma = \sqrt{\frac{\sigma^2}{2} + \frac{1}{2} \ln \left(\frac{\sigma^2}{\delta^2} \right) + \sigma^2 \frac{1}{2} \ln \left(\frac{\sigma^2}{\delta^2} \right) + \frac{1}{2} \frac{\sigma^2}{\delta^2} } \]

REFERENCES

Pham H., 1998, Méthodes d’Evaluation et Couverture en Marché Incomplet, CREST - ENSAE.

Treynor, 1961, Toward a Theory of the Market Value of Risky Assets, Unpublished manuscript.

*
**